Exactly controlling the non-supercompact strongly compact cardinals
نویسندگان
چکیده
We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and unify Theorems 1 and 2 of [6], due to the first author. 1 Introducing the Main Question The notions of strongly compact and supercompact cardinal are very close, so close that years ago it was an open question whether they were equivalent. When Solovay first defined the supercompact 2000 Mathematics Subject Classifications: 03E35, 03E55.
منابع مشابه
Level by level inequivalence beyond measurability
We construct models containing exactly one supercompact cardinal in which level by level inequivalence between strong compactness and supercompactness holds. In each model, above the supercompact cardinal, there are finitely many strongly compact cardinals, and the strongly compact and measurable cardinals precisely coincide. Say that a model containing supercompact cardinals satisfies level by...
متن کاملPatterns of Compact Cardinals
We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V |= “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + f : Ω → 2 is a function”, then there is a partial ordering P ∈ V so that for...
متن کاملOn the Strong Equality between Supercompactness and Strong Compactness
We show that supercompactness and strong compactness can be equivalent even as properties of pairs of regular cardinals. Specifically, we show that if V |= ZFC + GCH is a given model (which in interesting cases contains instances of supercompactness), then there is some cardinal and cofinality preserving generic extension V [G] |= ZFC + GCH in which, (a) (preservation) for κ ≤ λ regular, if V |...
متن کاملTallness and level by level equivalence and inequivalence
We construct two models containing exactly one supercompact cardinal in which all nonsupercompact measurable cardinals are strictly taller than they are either strongly compact or supercompact. In the first of these models, level by level equivalence between strong compactness and supercompactness holds. In the other, level by level inequivalence between strong compactness and supercompactness ...
متن کاملInner models with large cardinal features usually obtained by forcing
We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 68 شماره
صفحات -
تاریخ انتشار 2003